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The variability of the physical thickness of fully developed turbulent interfaces is
examined using scalar measurements in the outer far-field regions of round jets at a
Reynolds number of Re ∼ 20 000 and Schmidt number of Sc ∼ 2000. The interfacial
thickness is considered in terms of the inverse magnitude of the scalar gradient across
the interface and its relation to the scalar dissipation rate. The thickness variations
and their conditional statistics are examined on outer interfaces at a resolution
of ∼ 10003 with data that capture the full transverse extent of the flow. At the
resolution of the present measurements, the interfaces are observed to exhibit highly
intermittent thickness variations that consist of striation patterns, or undulations,
along the interfacial surfaces. The conditional probability density of the interfacial
thickness is found to be nearly lognormal, in agreement with previous studies. A new
scale-local density measure of the interfacial thickness is formulated to examine the
effects of coarse graining and the dependence of the thickness on resolution scale. The
scale-local thickness density, conditionally averaged on the outer interfaces, is found
to exhibit self-similarity in a range of resolved scales. This observation of self-similar
behaviour, in conjunction with intermittency, provides a physical ingredient useful for
studies of phenomena sensitive to turbulent interfaces.

1. Introduction
Knowledge of the behaviour of turbulent fluid interfaces, such as scalar interfaces

generated in large-Reynolds-number flows, is useful in a variety of basic and applied
problems (e.g. Pope 1988, 2000; Sreenivasan 1991, 1999, 2004; Warhaft 2000; Catrakis
2004). This is because physical, chemical or biological effects often occur across or on
such interfaces, e.g. molecular diffusion, electromagnetic-/optical-wave propagation,
chemical reactions or bioluminescence (e.g. Villermaux & Innocenti 1999; Bilger
2004; Latz et al. 2004; Dimotakis 2005; Schumacher, Sreenivasan & Yeung 2005).
As a result, it is desirable to develop an understanding of the physical aspects of
such interfaces in problems ranging from aeronautical flows to biological flows.
Fundamentally, interfacial properties provide clues to the distribution of physical
scales in turbulence (e.g. Sreenivasan, Prabhu & Narasimha 1983; Catrakis 2000).
Depending on the problem, different interfacial properties are useful for the develop-
ment of physical models. Examples of properties examined in previous works include
scale-local and scale-cumulative quantities such as fractal dimensions, the area–volume
ratio or surface density, the probability density of level-crossing scales or spacings,
the spectral behaviour, and multifractal measures (e.g. Sreenivasan 1991; Trouvé &
Poinsot 1994; Schumacher & Sreenivasan 2003). Because turbulent interfaces have
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highly irregular structure, especially at large Reynolds numbers, challenges persist in
their examination, modelling, and optimization.

The term ‘turbulent interface’ is often used to denote various types of turbulence-
generated fluid interfaces, some of which are related to intermittency. Interfaces
are referred to as ‘isosurfaces’, ‘layers’ or ‘fronts’ and may exhibit diffusive or non-
diffusive properties. These include concentration, density, or other scalar interfaces
as well as level crossings of velocity-component signals (e.g. Sreenivasan et al. 1983;
Sreenivasan, Ramshankar & Meneveau 1989; Villermaux & Innocenti 1999). External
intermittency refers to turbulent/non-turbulent interfaces such as the outer vorticity
or scalar interfaces (e.g. LaRue & Libby 1975; Bisset, Hunt & Rogers 2002). Internal
intermittency refers to the variability of the energy or scalar dissipation rates (e.g.
Sreenivasan 1985; Bilger 2004; Schumacher et al. 2005). The turbulent/non-turbulent
vorticity interface denotes the outer boundary between vortical and irrotational fluid,
also known as the ‘turbulence front’ (e.g. Corrsin & Kistler 1955; Bisset et al.
2002). The outer scalar interface denotes the interface between mixed fluid and pure
fluid (e.g. Joseph & Preziosi 1989; Catrakis et al. 2002b). Prior work on external
intermittency includes studies of the dynamics and correlations of outer vorticity
and scalar interfaces (e.g. Bisset et al. 2002; Catrakis et al. 2002b). Previous work
on internal intermittency includes studies of the probability density of the scalar
dissipation rate in various flows (e.g. Antonia & Sreenivasan 1977; Sreenivasan
1985; Dahm & Southerland 1997; Su & Clemens 1999), findings on multifractal
aspects of the energy and scalar dissipation rates (e.g. Meneveau & Sreenivasan 1991;
Sreenivasan 1991), examinations of joint statistics of scalar fields and dissipation rates
(e.g. Anselmet, Djeridi & Fulachier 1994), and studies of the geometrical structure
of active dissipation regions (e.g. Sreenivasan 1999; Brethouwer, Hunt & Nieuwstadt
2003; Schumacher & Sreenivasan 2003; Schumacher et al. 2005).

In the present work, the intermittency of the physical thickness of outer scalar
interfaces is examined. A database that captures the full transverse extent of the
far field of round jets above the mixing transition is utilized. This facilitates the
study of conditional statistics, for fully developed outer interfaces, but has resolution
limitations compared to local measurements or direct numerical simulations (e.g.
Sreenivasan 1985; Dahm & Southerland 1997; Schumacher et al. 2005). While the
present data are resolution limited and provide coarse-grained scalar field information,
they enable a study of variable-resolution effects above the image-resolution scale.
In § 2, a scale-local density measure of the interfacial thickness is introduced which
enables a study of resolution-scale effects on the coarse-grained scalar field. In § 3,
the thickness variations and their conditional statistics are examined on the outer
scalar interfaces. Quantitative visualizations of the thickness variations are presented.
Conditional statistics for the scale-local density of the mean interfacial thickness
indicate self-similar structure over a range of resolved scales. This finding on the
interfacial thickness density, together with knowledge of the interfacial-area density
(e.g. Catrakis, Aguirre & Ruiz-Plancarte 2002a), provides a useful ingredient for
physical modelling and subgrid-scale modelling as discussed in the conclusions.

2. The role of the physical thickness of turbulent interfaces
Fluid interfaces have previously been viewed primarily as corresponding to

isosurfaces of flow-field quantities, e.g. q(x, t), which can be chosen as scalar valued
and dimensionless without loss of generality. Examples of q(x, t) are diffusive or
non-diffusive quantities such as concentration, density, or vorticity magnitude. Such
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Figure 1. Three-dimensional schematic of the interfacial thickness h(x, t) dq corresponding
to a scalar-valued field of interest q(x, t). The interfacial thickness is quantified as the spacing
between the neighbouring isosurfaces corresponding to the thresholds q + dq and q , as shown.

flow-field isosurfaces, i.e.

q(x, t) = const., (2.1)

have zero thickness mathematically. However, physically, it is essential to appreciate
that the corresponding fluid interfaces must exhibit in general a finite thickness.

The role of the physical thickness of turbulent interfaces can be appreciated by
interpreting geometrically the probability density function (p.d.f.) of the field q(x, t),
as indicated in figure 1. The probability p(q) dq is the differential volume fraction of
fluid contained within the two neighbouring isosurfaces q +dq = const. and q = const.
The differential volume between the two isosurfaces can be expressed as A(q)h(q) dq

such that the p.d.f. pq(q) is directly determined by the interfacial properties as

pq(q) ≡ 〈A(q)h(q)〉q

Vref

, (2.2)

where 〈·〉q denotes the conditional statistic of ensemble averaging on interfaces, A(q)

denotes the interfacial surface area and h(q) is the mean inverse scalar gradient across
the interface (cf. Kuznetsov & Sabel’nikov 1990; Bilger 2004). The latter quantity is
also useful as a measure of the mean interfacial thickness, as discussed below. The
contribution from the differential volume, in (2.2), is normalized by the volume Vref

of a reference region in which the p.d.f. has the normalization
∫ qmax

qmin
pq(q) dq = 1, with

the values qmin � q � qmax corresponding to the variations in the reference region of
volume Vref .

To quantify the interfacial thickness, various measures can be used (e.g. Sreenivasan
et al. 1989; Bisset et al. 2002). In this work, we consider the thickness in terms of the
inverse of the magnitude of the gradient of q across the interface, denoted as h(x, t):

h(x, t) ≡ 1

|∇q(x, t)| =

∣∣∣∣∂q

∂n

∣∣∣∣−1

, (2.3)

where |∇q| is the magnitude of the gradient across the interface and n denotes
distance along the gradient. For a differential value dq , the thickness is h(x, t) dq and
corresponds to the spacing between neighbouring isosurfaces as illustrated in figure 1.
The quantity h(x, t) is, strictly speaking, the interfacial thickness per unit value of the
dimensionless flow quantity q . For simplicity we will refer to h(x, t) as the interfacial
thickness.
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For each interface, the mean thickness h(q) in the geometrical interpretation of the
p.d.f. in equation (2.2) is the average value over the interfacial surface Sq , i.e.

h(q) ≡ 1

A(q)

∫ ∫
Sq

h(x, t) dA =
1

A(q)

∫ ∫
Sq

∣∣∣∣∂q

∂n

∣∣∣∣−1

dA. (2.4)

The gradient ∇q is normal to the interface at all locations on the interfacial surface.
As long as the gradient magnitude |∇q| is finite, the interfacial thickness must also be
finite. By examining and combining (2.2) and (2.4), an interesting observation follows
in that the interfacial thickness variations alone directly determine the p.d.f. pq(q), i.e.

pq(q) ≡ 1

Vref

〈∫ ∫
Sq

h(x, t) dA

〉
q

. (2.5)

Equations (2.2)–(2.5), are written assuming the local thickness is finite. If there are
any regions of the flow where |∇q| = 0, i.e. if there are regions with no variations in
q , then these relations can be modified in terms of the spatial extent of such regions
(e.g. Catrakis 2004).

In practice, for large-Reynolds-number flows, it is difficult to attain the necessary
resolution to capture accurately and directly the full range of scales in experiments or
computations. However, with experimental data, one can still conduct coarse graining
a posteriori at variable scales above the resolution scale. To do so, it is helpful
to appreciate the idea of scale-cumulative vs. scale-local effects (e.g. Catrakis et al.
2002a) wherein the interfacial behaviour coarse-grained at a scale λ reflects only the
features at or above that scale. Thus, in addition to the full-resolution p.d.f. pq(q), it
is useful to consider the coarse-grained p.d.f. pq;λ(q; λ) corresponding to a resolution
scale λ as

pq;λ(q; λ) ≡ 〈A(q; λ) h(q; λ)〉q

Vref

, (2.6)

cf. (2.2), where A(q; λ) is the coarse-grained interfacial surface area and h(q; λ) is
the mean coarse-grained interfacial thickness. These two coarse-grained quantities
can each be expressed as integrals of the scale-local contributions, i.e. in terms of the
contributions as a function of scale, by introducing the respective scale-local densities,
e.g.

A(q; λ) ≡ A(q; λmin) −
∫ λ

λmin

gA(q; λ′) dλ′ or gA(q; λ) ≡ − dA(q; λ)

dλ
, (2.7)

where gA(q; λ) is the scale-local surface area density, and

h(q; λ) ≡ h(q; λmin) +

∫ λ

λmin

g
h
(q; λ′) dλ′ or g

h
(q; λ) ≡ d h(q; λ)

dλ
, (2.8)

where g
h
(q; λ) is the scale-local mean interfacial thickness density. The surface area

and mean interfacial thickness, at a fully resolved scale λmin, are denoted as A(q; λmin)
and h(q; λmin) respectively. In previous studies, coarse-graining aspects of the surface
area were examined (e.g. Catrakis et al. 2002a). Here, the behaviour of the coarse-
grained interfacial thickness and the role of intermittency will be examined (§ 3).

For diffusive fields, it is also useful to consider the square magnitude of the gradient
of q across each interface, which contributes to the conditional mean scalar dissipation
rate in the case of mixing (e.g. Pope 2000). This can be denoted as ζ (x, t), i.e.

ζ (x, t) ≡ |∇q(x, t)|2 = h−2(x, t), (2.9)
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recalling equation (2.3). In other words, the interfacial thickness h(x, t) is

h(x, t) = ζ −1/2(x, t). (2.10)

For example, in turbulent mixing, ζ is related to the scalar dissipation rate χ as ζ =
χ/D since χ ≡ D |∇c|2, with q = c(x, t) for the scalar field and D for the scalar diffu-
sivity. The thickness is in this case h =

√
D/χ , i.e. it is the strain-limited diffusion-layer

thickness (e.g. Sreenivasan et al. 1989). The p.d.f. of such thickness variations along
an interface is a conditional statistic requiring knowledge of the interfacial location.

3. Examination of fully developed interfacial thickness variations
In order to contribute to studies of interfacial thickness variations in large-

Reynolds-number flows, it is recognized that one needs to examine turbulence at
fully developed flow conditions (e.g. Roshko 1991). This is because at such conditions
one may anticipate various manifestations of self-similarity (e.g. Sreenivasan 1999)
which provides the means to extrapolate to larger Reynolds numbers. For this reason,
we will utilize the database of turbulent scalar interfaces previously recorded and
described in Catrakis et al. (2002b). Those measurements, while resolution limited,
span the full transverse extent of fully developed interfaces and enable a study
of the coarse-grained behaviour of the thickness variations along the interfaces. A
brief summary of the experiments is included here, for completeness, along with a
discussion on resolution limitations.

The data consist of scalar measurements in the far field of round jets at a Reynolds
number of Re ∼ 20 000, a Schmidt number of Sc ∼ 2000 and a downstream distance
of z/d ∼ 500 jet-nozzle diameters. The imaging was conducted at a fixed downstream
location in the similarity plane of the flow. Sets of approximately 1000 temporally
consecutive scalar-field images were recorded during each experiment at an imaging
rate matching the mean velocity Uouter of the outer scalar interfaces separating mixed
fluid from pure ambient fluid. The spatial resolution of each two-dimensional spatial
image is ∼ 1000 × 1000 pixels, so that each three-dimensional space–time data set
spans a volume of approximately 10003 data values. The large-scale transverse extent
is L ∼ 0.5 m and the resolution scale resulting from the number of pixels as well as the
laser-sheet thickness is λres ∼ 500 µm, i.e. L/λres ∼ 103. Based on the energy dissipation
rate on the centreline of jets (e.g. Friehe, Van Atta & Gibson 1971), the Kolmogorov
scale is λK � 0.95 Re−3/4 L � 600 µm and the Batchelor scale is λB = λK Sc−1/2 � 10 µm.
Thus, at least in terms of jet-centreline estimates, the limited resolution of the
present database can only capture those scales that are larger than the Kolmogorov
scale. Nevertheless, the database enables an a posteriori examination of coarse-
graining properties, above the resolution scale, such as the scale-local mean interfacial
thickness density, cf. (2.8). For the behaviour at very fine scales, i.e. scales smaller
than the Kolmogorov scale, we refer the reader to recent direct numerical simulations
conducted with full resolution at reduced Reynolds numbers (Schumacher et al. 2005).

To evaluate and quantitatively visualize the conditional behaviour of the thickness
variations, along the outer scalar interfaces, the full scalar gradient would be needed.
In the present data, the out-of-plane scalar gradient component can only be estimated.
In order to attempt this, we utilize Taylor’s hypothesis keeping in mind however that
in the outer regions of the jet near the turbulent/non-turbulent vorticity interface
there may be possible occurrences of flow reversal (e.g. Dahm & Southerland 1997;
Su & Clemens 1999; Pope 2000; Bisset et al. 2002), i.e.

h̃(q1) ≡ h(q1)

〈h(q1)〉
with h(q1) =

1

|∇q1| �
∣∣∣∣(∂q1

∂x
,
∂q1

∂y
,

1

Uouter

∂q1

∂t

)∣∣∣∣−1

, (3.1)
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Figure 2. Quantitative visualization at a whole-field resolution of ∼ 10003 of the variations

in the interfacial thickness h̃(q1) along a fully developed outer scalar interface at Re ∼ 20 000
and Sc ∼ 2000. The colours, ranging from light blue to dark blue, denote increasing values of
the interfacial thickness or decreasing values of the scalar gradient magnitude.

where h(q1) denotes the set of conditional thickness values evaluated for the norma-
lized dimensionless scalar threshold q1 of the outer interfaces (cf. Catrakis et al. 2002b),

and h̃(q1) denotes these values normalized by the ensemble-averaged conditional
mean thickness 〈h(q1)〉. While the flow-imaging rate matches the mean velocity Uouter

of the outer interfaces, the velocity fluctuations of these interfaces are probably
of significant magnitude relative to Uouter. To gauge the applicability of Taylor’s
hypothesis, for estimating the interfacial thickness, we consider below the p.d.f. of the
estimated conditional scalar dissipation rate which is directly related to the p.d.f. of
the thickness, cf. (2.10).

The variability of the interfacial thickness is demonstrated in the example of the
quantitative visualization in figure 2. Locally thin regions of the interface are labelled
with light blue, and locally thick regions with dark blue. It is evident, on the basis of
multiple visualizations such as in figure 2, that the outer interfaces exhibit thickness
variations along the entire interfacial surfaces. These thickness variations are seen to
consist of striation patterns, or undulations, along the interfaces. In some regions,
these striation patterns appear to exhibit nearly one-dimensional or axisymmetric local
structure. However, more complicated topologies are also present in other regions.
The highly intermittent nature of the thickness is apparent with multiple regions
exhibiting thickness values that are significantly smaller or larger than the mean
interfacial thickness. The variability in the thickness reflects the intermittency of the
scalar dissipation-rate field and the strain-rate field on the interfaces. Locally thin



On intermittency and turbulent fluid interfaces 45

1.0

0.8

0.6

0.4

0.2

0 1 2

h(q1)

3 4

p h
(q

1)
[h

(q
1)

]
~

~

~

(a)
0

–0.5

–1.0

–1.5

–2.0

–1.5 –1.0 –0.5 0 0.5 1.0

log10 [h(q1)]

lo
g 1

0{
p h

(q
1)

[h
(q

1)
]}

~
~

~

(b)

Figure 3. (a) Conditional probability density ph̃(q1)
[h̃(q1)] of the thickness variations of outer

scalar interfaces for the present data, at the same flow conditions as for figure 2. Solid curve with
symbols is for the measurements. Dotted curve is the lognormal model. (b) Double-logarithmic
coordinate behaviour of the conditional probability density with the solid curve and symbols
for the data and the dotted curve for the lognormal model.

regions of the interfaces correspond to active regions with high scalar dissipation rate
and high strain rate. The present observations are consistent with previous findings
on the structure of intermittency since the striation patterns along the interfaces can
be interpreted as the interfacial intersections of sheet-like active regions that have
previously been observed in studies of dissipation-rate fields (e.g. Sreenivasan 1985;
Brethouwer et al. 2003).

From the interfacial thickness data, the conditional p.d.f. ph̃(q1)
[h̃(q1)] of the thick-

ness along the outer interfaces was evaluated. This was computed as an ensemble
average over several realizations at the same flow conditions as for the visualization in
figure 2. The conditional p.d.f. is shown in figure 3 in linear coordinates as well as in
double-logarithmic coordinates. Over a relatively wide range of thickness variations,
the measurements suggest that the conditional-p.d.f. behaviour can be approximated

well by lognormal statistics. Specifically, in the range −1.0 � log10[h̃(q1)] � 0.65 the
measurements agree closely with the lognormal model shown as a dotted curve in
figure 3:

ph̃(q1)
[h̃(q1)] � 1

σh̃(2π)1/2h̃(q1)
exp

{
−1

2

[
1

σh̃

ln h̃(q1) +
σh̃

2

]2 }
. (3.2)

The normalization of the interfacial thickness by its mean value h(q1) results in a one-
parameter fit with σh̃ � 0.78 for the present flow conditions. At low thickness values,
the observed deficit in probability density is probably due to the resolution limitations.

In the general case, the p.d.f. of the interfacial thickness is directly related to the p.d.f.
of the square magnitude ζ = 1/h2 of the scalar gradient, cf. (2.10). The two conditional
p.d.f.s must always be such that ph[h(q)] |dh| = pζ [ζ (q)] |dζ |, by conservation of

probability. Thus, in terms of the normalized variables h̃ ≡ h/〈h〉 and ζ̃ ≡ ζ/〈ζ 〉:

ph̃(q1)
[h̃(q1)] = pζ̃ (q1)

[ζ̃ (q1)]|dζ̃ /dh̃| with |dζ̃ /dh̃| = 2 ζ̃ (q1)/h̃(q1), (3.3)

expressed here for the outer-interface threshold q1. These relations have an interesting
consequence for interfaces exhibiting lognormal behaviour. Namely, combining
(3.2) and (3.3) shows that lognormal statistics of the thickness must imply similar
statistics for the square magnitude ζ of the scalar gradient or the scalar dissipation
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Figure 4. (a) Resolution-scale dependence of the mean coarse-grained interfacial thickness
h(q1; λ) for outer interfaces, where the resolution scale λ is normalized by the large scale L of
the interfaces. (b) Scale-local interfacial thickness density gh(q1; λ) vs. normalized resolution
scale λ/L. Solid curves and symbols are for the data. Dotted curves are power-law models.

rate χ = D ζ , and vice versa. The relation between the corresponding parameters is
σζ̃ = 2 σh̃. The observed behaviour in figure 3, therefore, is consistent with previous
findings of lognormal statistics of the scalar dissipation rate (e.g. Antonia &
Sreenivasan 1977; Sreenivasan 1985; Bilger 2004) and, furthermore, indicates that the
conditional p.d.f.s along the interfaces also exhibit lognormal statistics. The results
in figure 3, therefore, represent the intermittency effect along the interfaces.

As indicated in § 2, on the basis of the general considerations in (2.2) for the p.d.f.
pq(q) of flow-derived fields, the mean interfacial thickness h(q) is a useful quantity
for physical modelling. Also, for large-Reynolds-number flows, there are usually
resolution limitations associated with attempting to capture directly the full range of
interfacial thickness variations. For example, in the present database, direct whole-field
imaging of the interfaces is restricted to finite resolution which results in averaging
over the under-resolved scales. For these reasons, it is helpful to conduct a posteriori
coarse graining of the scalar field and to examine resolution-scale effects on the
mean interfacial thickness, as discussed in (2.8). Figure 4(a) shows the dependence
on resolution scale λ for the mean coarse-grained interfacial thickness h(q1; λ) of
the outer interfaces. The present database was successively coarse grained and, at
each resolution level, the mean interfacial thickness h(q1; λ) was evaluated. The data
indicate a power-law dependence of the mean interfacial thickness on resolution scale

h(q1; λ) ∼
(
λ

L

)α

, (3.4)

with an exponent of α � 0.66 for the present flow conditions. This behaviour
corresponds to cumulative contributions from interfacial scales. Namely, the mean
coarse-grained interfacial thickness h(q1; λ) consists of contributions at scales greater
than or equal to λ, i.e. scales spanning the variable scale λ to the largest extent L

of the interfaces. It is helpful, therefore, to distinguish between the scale-local and
cumulative contributions. This can be done in terms of the scale-local interfacial
thickness density gh(q1; λ), as defined in (2.8). Its dependence on resolution scale is
shown in figure 4(b):

g
h
(q1; λ) ∼

(
λ

L

)α−1

with h(q1; λ) = h(q1; λmin) +

∫ λ

λmin

g
h
(q1; λ

′) dλ′, (3.5)
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i.e. the scale-local density is also a power law since it is a derivative of the cumulative
quantity with respect to scale, cf. (2.8) and (3.4). This indicates self-similarity in the
scale-local contributions to the mean interfacial thickness, which enables modelling of
the subgrid-scale integral term in (3.5). Together with knowledge of the surface-area
scale-local contributions (e.g. Catrakis et al. 2002a), the present finding is useful there-
fore for incorporating resolution-scale effects in physical models including subgrid-
scale modelling approaches (e.g. Pullin & Saffman 1998; Meneveau & Katz 2000).

4. Conclusions
The variability of the thickness of fully developed turbulent interfaces has been

examined using whole-field scalar measurements at a resolution of ∼ 10003 in the
outer far-field regions of round jets at a Reynolds number of Re ∼ 20 000 and
Schmidt number of Sc ∼ 2000. Interfacial-thickness striation patterns, or undulations,
were found along the interfacial surfaces on the basis of quantitative visualizations.
This is consistent with previous observations of sheet-like structures in the scalar
dissipation-rate field (e.g. Sreenivasan 1985; Brethouwer et al. 2003). The conditional
probability density of the thickness variations along the interfaces was found to be
nearly lognormal in accord with previous studies of the dissipation rate (e.g. Antonia
& Sreenivasan 1977; Sreenivasan 1985; Bilger 2004). While the present data are
resolution limited, they have enabled an examination of variable-resolution effects
above the image-resolution scale by coarse graining the scalar field. A scale-local
density measure has been introduced to quantify the contributions, as a function
of scale, to the coarse-grained interfacial thickness. The data indicate self-similarity
in the scale-local interfacial thickness density. A resulting power-law dependence on
resolution scale is exhibited by the mean coarse-grained interfacial thickness. This
observation of self-similarity, along with other scaling results (e.g. Sreenivasan 1991,
1999), can be expected to be helpful in studies of large-Reynolds-number flows. By
combining with knowledge of area-volume properties (e.g. Catrakis et al. 2002a), the
present finding of self-similarity in the interfacial thickness density provides a means
to incorporate the dependence on scale in studies of phenomena sensitive to turbulent
interfaces (e.g. Pope 1988; Sreenivasan 1991, 1999; Catrakis 2004).
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